8. Simplified Payment Verification
It is possible to verify payments without running a full network node. A user only needs to keep
a copy of the block headers of the longest proof-of-work chain, which he can get by querying
network nodes until he's convinced he has the longest chain,
and obtain the Merkle branch
linking the transaction to the block it's timestamped in. He can't check the transaction for
himself, but by linking it to a place in the chain, he can see that a network node has accepted it,
and blocks added after it further confirm the network has accepted it.
As such, the verification is reliable as long as honest nodes control the network, but is more
vulnerable if the network is overpowered by an attacker. While network nodes can verify
transactions for themselves,
the simplified method can be fooled by an attacker's fabricated
transactions for as long as the attacker can continue to overpower the network. One strategy to
protect against this would be to accept alerts from network nodes when they detect an invalid
block,
prompting the user's software to download the full block and alerted transactions to
confirm the inconsistency. Businesses that receive frequent payments will probably still want to
run their own nodes for more independent security and quicker verification.
9. Combining and Splitting Value
Although it would be possible to handle coins individually, it would be unwieldy to make a
separate transaction for every cent in a transfer. To allow value to be split and combined,
transactions contain multiple inputs and outputs.
Normally there will be either a single input
from a larger previous transaction or multiple inputs combining smaller amounts, and at most two
outputs: one for the payment, and one returning the change, if any, back to the sender.
It should be noted that fan-out, where a transaction depends on several transactions, and those
transactions depend on many more, is not a problem here. There is never the need to extract a
complete standalone copy of a transaction's history
10. Privacy
The traditional banking model achieves a level of privacy by limiting access to information to the
parties involved and the trusted third party. The necessity to announce all transactions publicly
precludes this method,
but privacy can still be maintained by breaking the flow of information in
another place: by keeping public keys anonymous. The public can see that someone is sending
an amount to someone else, but without information linking the transaction to anyone.
This is
similar to the level of information released by stock exchanges, where the time and size of
individual trades, the "tape", is made public, but without telling who the parties were.
As an additional firewall,
a new key pair should be used for each transaction to keep them
from being linked to a common owner. Some linking is still unavoidable with multi-input
transactions, which necessarily reveal that their inputs were owned by the same owner. The risk
is that if the owner of a key is revealed,
linking could reveal other transactions that belonged to
the same owner.
11. Calculations
We consider the scenario of an attacker trying to generate an alternate chain faster than the honest
chain. Even if this is accomplished, it does not throw the system open to arbitrary changes,
such
as creating value out of thin air or taking money that never belonged to the attacker. Nodes are
not going to accept an invalid transaction as payment, and honest nodes will never accept a block
containing them.
An attacker can only try to change one of his own transactions to take back
money he recently spent.
The race between the honest chain and an attacker chain can be characterized as a Binomial
Random Walk.
The success event is the honest chain being extended by one block, increasing its
lead by +1, and the failure event is the attacker's chain being extended by one block, reducing the
gap by -1.
The probability of an attacker catching up from a given deficit is analogous to a Gambler's
Ruin problem. Suppose a gambler with unlimited credit starts at a deficit and plays potentially an
infinite number of trials to try to reach breakeven.
We can calculate the probability he ever
reaches breakeven, or that an attacker ever catches up with the honest chain, as follows [8]:
p = probability an honest node finds the next block
q = probability the attacker finds the next block
qz = probability the attacker will ever catch up from z blocks behind